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ABSTRACT 
Automatically detecting attentional states is a prerequisite 
for designing interventions to manage attention—knowledge 
workers’ most critical resource. As a first step towards this 
goal, it is necessary to understand how different attentional 
states are made discernible through visible cues in knowledge 
workers. In this paper, we demonstrate the important facial 
cues to detect attentional states by evaluating a data set of 15 
participants that we tracked over a whole workday, which in-
cluded their challenge and engagement levels. Our evaluation 
shows that gaze, pitch, and lips part action units are indicators 
of engaged work; while pitch, gaze movements, gaze angle, 
and upper-lid raiser action units are indicators of challenging 
work. These findings reveal a significant relationship between 
facial cues and both engagement and challenge levels experi-
enced by our tracked participants. Our work contributes to the 
design of future studies to detect attentional states based on 
facial cues. 
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INTRODUCTION 
In their book The Attention Economy, Davenport and Beck 
argue that “understanding and managing attention is now the 
single most important determinant of business success” [11]. 
The authors further emphasize that attention is a scarce and 
valuable asset, which, when in deficit, may cause serious 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from permissions@acm.org. 
CHI ’20, April 25–30, 2020, Honolulu, HI, USA. 
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-6708-0/20/04 ..$15.00. 
http://dx.doi.org/10.1145/3313831.3376566 

psychological and organizational consequences. Therefore, 
managing and making the optimal use of this limited resource 
is vital, especially when it comes to users such as knowledge 
workers. Knowledge workers, as defined by Janz et al., are 

“high-level employees who apply theoretical and analytical 
knowledge, acquired through formal education” [25]. They 
are described as the most valuable asset for companies in 
the modern world and are key to economic growth [18]. As 
they are the most expensive type of workers to employ, it is 
therefore vital to devise approaches to help them understand 
and manage their own attention. 

An approach for managing individuals’ attention resource is 
to allocate the right amount of attention to each task and direct 
focused attention to most profitable tasks [11]. The first step 
in applying this approach is to detect the perceived level of 
attention by knowledge workers. For each unique task that 
a knowledge worker performs, they require a certain level of 
attention. As the awareness about attentional states can help 
attention management systems find opportune moments for 
each task, these systems can potentially save parts of their 
focused attention resource. The most straightforward way to 
measure attention is to ask individuals directly [11]. However, 
this method is limited to the number and quality of individuals’ 
responses and can cause interruptions. Therefore, finding new 
ways to continuously measure attentional states unobtrusively 
is an important issue, warranting further exploration. 

The emergence of physiological sensors has enabled re-
searchers to gain a better understanding of people’s mental and 
attentional states. In the last decade, technological advances 
have made these sensors more available and affordable. In the 
current HCI literature, the detection of facial expressions from 
such sensors has been the subject of interest for detecting men-
tal states of users [13, 22, 46]. Lately, facial expression recog-
nition technology and applications have become increasingly 
available, some examples include: OMRON 1, FaceReader 2, 

1https://www.components.omron.com/mobile/hvc_p2/ 
2https://www.noldus.com/human-behavior-research/products/ 
facereader 
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OpenFace [6], AFFDEX [37] and IntraFace [12]. These prod-
ucts can record a wide range of features for analysis from snap-
shots of an ordinary web camera, including facial expressions, 
emotions, action units, pupil size, and facial landmarks. Their 
affordability, availability, and unobtrusiveness make them a 
promising technology for in-situ recognition of users’ mental 
states. Given this potential, we wanted to explore whether the 
same tools could be used to find cues that hint at knowledge 
workers’ attentional states. Since knowledge work covers a 
broad range of jobs, we recruited academic researchers as our 
use case because of the diversity of their tasks, availability, 
and importance of attention management in their job due to 
the high workload they experience [24, 27, 49]. 

The preliminary challenge in using facial cues for automated 
attentional state detection lies in the selection of potential 
predictors. Hence, this paper is aimed at narrowing down 
the set of potential features by investigating the correlations 
between facial cues and attentional states. We describe the data 
collection of 15 recruited researchers who worked for a day in 
a real workplace while cameras captured their facial cues. We 
investigate the facial cues in relation to their attentional states 
reported. Our results highlight potential indicators to guide 
future works on building classifiers for classifying attentional 
states using facial cues. 

RELATED WORK 
In this section, we present three keys areas in which we have 
situated our research: (1) attentional state theories, (2) atten-
tional state measurement with physiological sensors, (3) and 
recognition of attentional states using facial expressions. 

Understanding Attentional States 
The literature contains a wealth of work on topics related 
to attentional states, such as user engagement [42], mindful-
ness [29], cognitive absorption [3], and flow [10]. Many theo-
ries have attempted to provide definitions for attentional states, 
but a comprehensive definition covering all of its diverse as-
pects is still lacking [39]. Schaufeli et al. [47] performed a 
study to define engagement. The authors defined engagement 
as the opposite of burnout and studied their hypothesis on two 
groups of participants, undergraduate students, and company 
employees. Based on their results, engagement is negatively 
correlated with burnout, and considered this negative correla-
tion as the verification for their definition. 

Mindfulness is another well-known concept that describes at-
tentional state, and is defined as adjusting attention to focus 
on and awareness of the current activity [7]. Mindfulness is 
characterized by three axioms: intention, attention, and atti-
tude [55]. Mindfulness approaches focus on mental training 
to reduce the cognitive costs of distractions. 

Among the theories, flow proposed by Csikszentmihalyi is the 
most well-known theory related to attentional states [10]. This 
theory explains how a balance between skill level and task dif-
ficulty can place a person in an optimal state for work, which 
leads to enjoyment and absorption in a task on hand. Naka-
mura et al. claimed that entering and staying in the optimal 
state of flow requires users’ attention, which is not considered 
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Figure 1: Mark et al.’s framework used in this work to operationalise 
attentional states. 

in flow theory and the lack of it may lead to apathy, anxiety, 
and boredom [38]. 

Mark et al. [34] proposed a theoretical framework for atten-
tional states which addressed this problem and took engage-
ment into account. Their proposed a framework describes at-
tentional states by two factors: engagement and challenge [34]. 
Based on these two factors, their theoretical framework divides 
attentional states in the workplace into four quadrants—Focus, 
Rote, Frustrated and Bored (Figure 1). They define challenge 
as “the amount of mental effort that one must exert to perform 
an activity.”, and for engagement, they used the definition 
proposed by Schaufeli et al. [47]: “a positive fulfilling, work-
related state of mind that is characterized by vigor, dedication, 
and absorption.”. 

O’Brien and Cairns [39] discussed the relationship between 
flow, engagement, and challenge. Whereas earlier studies con-
sidered engagement as a subset of flow [44, 52], they held the 
idea that flow is a subset of engagement. They concluded this 
based on a study, in which they investigated consequences 
of flow in engaged users and observed that engagement does 
not necessarily come with symptoms of flow such as feel-
ings of pleasure or being challenged. They described flow as 
a positive mental state of which engagement is a necessary 
prerequisite, while the opposite is not always true. 

In this work, we based our study design on Mark et al.’s frame-
work [34]. We chose this framework because it describes at-
tentional states as a continuum, which includes positive parts 
(e.g focus) and negative parts (e.g. frustration and boredom). 
In contrast, theories such as flow and mindfulness only fo-
cus on the positive side of attentional state. This continuous 
operationalization provides us with more insight into users’ 
attentional states. We can consider the discrepancy between 
users’ skill levels and task difficulty to infer the amount of 
mental effort required in a task. This amount of effort is 
defined as challenge in this model similarly to challenge in 
flow theory. Finally, because our study involved participants’ 
self-reports, the intuitive and straightforward definitions of at-
tentional states was another contributing factor in our choice. 
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Attentional State Measurement 
Current approaches for measuring attentional states can be 
divided into two categories. The first category is based on 
subjective methods such as questionnaires and experience 
sampling [9]. The second is based on physiological sensing 
and observation. As we employ both categories in our work, 
we will review them accordingly in this section. 

Subjective Methods 
Mark et al. [33] considered engagement to be a dimension of 
mood and tried to measure the effect of interpersonal interac-
tion, task switching, social media using, and email checking 
on engagement. To measure this, they employed experience 
sampling [9] in the form of pop-up questions on participants’ 
screen. They used the same method to measure challenge [34]. 

O’Brien et al. [41] proposed the user engagement scale (UES), 
a 31-item questionnaire which measures engagement based 
on 6 factors: aesthetic appeal, focused attention, perceived 
usability, endurability, novelty, and felt involvement. In the 
following evaluation of their questionnaire [40], they claimed 
that engagement is influenced more by the first three factors 
and combined the last three factors into a single one (reward), 
then revised their questionnaire to a shorter 12-item form. 
However, the applicability of this model to other areas of HCI, 
particularly for in-situ studies, is questionable for two reasons. 
First, their definitions are domain-specific for each factor and 
are not applicable to other areas. Second, they ask a large 
number of questions to measure engagement, and answering 
them is too disruptive for in-situ studies. 

Subjective methods are easy to use to measure attentional 
states, but their accuracy is limited to their obtrusiveness na-
ture and users’ self-assessments. To overcome these limita-
tions, researchers delved into automated approaches to detect 
attentional states using physiological signals. 

Physiological Sensing-Based Methods 
In this section, we first review previous works that used physi-
ological signals to measure attentional states and then present 
a review on works that measured other related concepts with 
physiological signals. To the best of our knowledge, research 
on measuring attentional states, engagement, and challenge 
using physiological signals in the workplace is scarce. There 
is, however, a broad range of research on measuring other 
factors related to attentional states using physiological sensing 
such as affective states, interruptions, and stress in learning 
environments and the use of technology. 

McDuff et. al [36] proposed a system called AffectAura to 
measure engagement using physiological signals. They used 
a sensor setup including a webcam, a Microsoft Kinect, a 
microphone, and an electrodermal activity (EDA) sensor to 
measure engagement. They packaged their model as a toolkit 
that can measure engagement continuously. Lalmas et al. [28] 
reviewed physiological signals that have been used to measure 
engagement in everyday tasks such as reading the news. Based 
on their results, eye tracking and mouse activity are the most 
effective modalities to measure engagement with. DeFalco 
et al. [14] studied engagement and affective states based on 
participants’ posture in a serious game for military training 

and compared it with a method based on users’ interactions 
with the system such as mouse and keyboard actions. Their 
results showed that interaction-based methods outperformed 
posture-based methods in measuring engagement. 

Physiological signals have also been used to measure cognitive 
load [2, 35, 54]. For instance, McDuff et al. [35] employed 
the use of bio-markers such as respiration rate, heart rate, heart 
rate variability, and facial features to measure the cognitive 
load of participants while participants were exposed to a task 
with high cognitive demand. They found a correlation between 
facial expressions and other measured bio-signals. Similarly, 
Abdelrahman et al. [2] used thermal imagining to measure cog-
nitive load, showing that the difference between the tempera-
ture of the forehead and nose to be an indicator of cognitive 
load. In another study, they combined the thermal camera with 
eye-tracker to detect four types of attention, namely sustained, 
alternating, selective, and divided attention [1]. 

Most of the previous works were conducted in lab environ-
ments, where the participant movements were restricted and 
the tasks were controlled. However, there are only a few stud-
ies that took place in real workspaces. For example, Zuger et 
al. [56] studied interruptibility of knowledge workers in their 
real workspaces. They conducted a two-week field study with 
13 professional software developers and measured their heart 
rate, heart rate variability, physical activity, and sleep during 
the day alongside their interaction with personal devices. They 
found that interaction data can give a better prediction for in-
terruptibility than physiological sensors. Similarly, Di Lascio 
et al. [15] conducted another study in-situ, which aimed at es-
timating students’ emotional engagement based on their EDA 
signal. They gathered self-reports and EDA measurements of 
24 students over 41 lectures and built a classifier for emotional 
engagement based on that. 

Facial Expression Analysis 
Facial expressions have been proven to be particularly use-
ful for investigating affect, largely because of the ubiquity of 
facial expressions in human experience and the unobtrusive-
ness of video recording [17, 26]. In many studies, the Facial 
Action Coding System (FACS), which enumerates possible 
movements of the human face, is used to manually annotate fa-
cial movements that comprise expressions of emotion. FACS 
is a taxonomy proposed by Ekman and Friesen [19], which 
describes all the visible movements on the face. It describes 
each movement as components called action units (AU). In 
total there are 44 AUs, each representing the movement of 
one or more muscles on the face, eyes or neck that change 
the appearance or orientation of the face or the eyes (30 re-
lated to the face, 14 related to the eyes and the orientation 
of the face) [19]. Action Units happen both individually and 
in groups. For instance, happiness includes the presence of 
two basic AUs—Cheek Raiser (AU6) and Lip Corner Puller 
(AU12). 

Advances in machine learning and computer vision made auto-
matic AU recognition possible and several toolkits have been 
validated for detecting AUs from frames of an ordinary web-
cam. OpenFace [6] is one of such application, which is able to 
detect 18 action units, head poses and gaze angles from face 
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images. It firsts detects faces in a frame and extracts landmarks 
and appearances of the detected faces. Then, using a classifier 
and these two sets of features, it predicts the action units and 
other facial cues. Openface was independently validated on 
the FERA 2015 challenge [51] dataset and outperformed two 
baseline approaches in estimating both the intensity and the 
occurrence of action units [5]. In the remainder of this section, 
we provide a brief review of previous works that measured 
factors related to attentional state detection based on facial 
expressions. 

Whitehill et al. [53] studied the correlation of engagement and 
facial expressions in an online learning environment. They 
analyzed a set of video clips of students’ faces and labeled 
them with four levels of engagement. They subsequently 
investigated the correlation between these labels and students’ 
facial expressions. Based on their results, the rotation of face 
(roll), the up/down tilting of the face (pitch), AU01 (inner brow 
raiser), AU10 (upper lip raiser), and AU45 (blink) have the 
highest correlations with engagement. Grafsgaard et al. [21] 
used facial expressions to automatically predict engagement 
and frustration. Based on their results, AU04 (brow lowerer) 
correlates with frustration, and AU01 (inner browse raiser) 
and AU04 (brow lowerer) are two action units that correlate 
with endurability, which is an aspect of engagement. 

Littlewort et al. [31] investigated spontaneous facial expres-
sion features of children during problem-solving. Based on 
their results, facial expressions during the latency of a response 
to a problem is an indicator of success in solving that problem. 
Bosch et. al [8] found expressions related to student engage-
ment, boredom, and frustration in a real classroom. Based 
on their findings, frustration in the classroom was manifested 
by motion, AU01 (inner brow raiser) and AU10 (upper lip 
raiser). They reported changes in distance from the screen, 
AU17 (chin raiser) and head movements as signs of boredom. 
For engagement, they reported AU18 (lip pucker) as the only 
correlating factor in facial expressions. 

D’Mello et al. [17] studied positive and negative predictors of 
boredom and frustration on the face. They employed labelers 
to rate boredom and frustration in videos from an online tutor-
ing system and used them alongside the self-reported rates to 
find related expressions to boredom and frustration. Based on 
their findings, AU01 (inner brow raiser), AU02 (outer brow 
raiser) and AU14 (dimpler) showed positive correlations with 
frustration, while AU43 (eye closed) was the only expression 
correlated with boredom. 

The above-mentioned works studied different aspects of at-
tentional states in a learning environment. However, tasks 
and definitions of engagement and challenge are different in a 
learning environment compared to other workplaces. Engage-
ment in learning environment associates with lecture, whereas 
in knowledge work, engagement associates with the task in 
hand, which can be diverse. On the other hand, research in 
learning environments mostly focused on specific attentional 
states such as frustration, but did not address all the attentional 
states. Therefore, the applicability of these methods in areas 
other than learning environments such as research tasks is 
questionable. 

METHODOLOGY 
The aim of our work is to understand the relationship between 
facial cues and attentional states of knowledge workers in their 
place of work unobtrusively. We aimed to detect visible signs 
of different attentional states on the face to provide necessary 
knowledge for future works to build classifiers for recognizing 
attentional states. 

As a representative sample, we recruited 15 students (7M/8F) 
aged between 26 and 34 (M=30.4, SD=2.89) from our uni-
versity. They were undertaking their doctoral research degree 
from a range of disciplines, including law, civil engineering, 
computer science, and environmental science. 

From our review of the literature, we have chosen Mark et 
al.’s [34] theoretical framework, as it was clear and had easy-
to-follow definitions for our participants and has been demon-
strated to be effective for workplace environments. The model 
describes attentional states in two dimensions, namely en-
gagement and challenge, divided into four quadrants: focus 
(highly engaged and challenged), rote (engaged but not chal-
lenged), frustrated (not engaged but highly challenged), and 
bored (neither engaged nor challenged). We report the re-
sults of an observational study in which we captured partici-
pants’ facial snapshots and their self-reported attentional states 
throughout the day. For each self-reported attentional state, the 
participants reported their current engagement and challenge 
level. 

To have awareness about tasks our participants did during the 
study, in addition to the data we mentioned above, we also 
captured the mouse and keyboard activity of our participants 
through an application we installed on their device with their 
permission. This application captured mouse movements and 
clicks and also keyboard strokes and their timestamps. We 
obtained ethics approval from the University of Melbourne’s 
ethics committee for our data collection. 

Experimental Setup 
Figure 2 illustrates our experimental setup. We allocated a 
desk in one of our research offices and placed an external 
monitor on it attached with an HD webcam (Logitech C930E), 
to capture snapshots of participants’ faces and a small Palette 
Gear Core display 3 (45x45 mm) for notifying participants to 
enter their attentional state levels. 

On the left side of the desk, we placed two Palette Gear sliders4 

for experience sampling, one for reporting their engagement 
level and one for reporting their challenge level. Once both 
sliders were set, participants could submit their results by 
pushing a button. The scale of the sliders ranges from 0 to 100. 
We decided not to use a Likert scale as it is uni-dimensional 
and only gives a few options to the users. Studies by Weijters 
et al. (2010) and Rohrmann (2003) have shown that when 
making a judgment about the response category, respondents 
make use of the meaning of the labels attached to the category, 
suppressing their true intentions as it is hard for them to ori-
ent themselves to one choice. We minimize these effects by 
3https://store.palettegear.com/products/ 
palette-core-module 
4https://store.palettegear.com/ 
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Figure 2: Experimental Setup 

training the participants at the beginning of the experiment. 
We decided to use physical sliders to record the engagement 
and challenge levels of the participants as this approach inter-
feres less with their daily computer-assisted tasks [48]. We 
instructed participants to use the value 50 (central position of 
the sliders) as the threshold between high- and low- engage-
ment/challenge. Also, we found that researchers do some of 
their activities with materials other than their PC (e.g. reading 
books or physical papers) and if we used pop-up notifications, 
notifications were likely to be missed or forced participants to 
get back to their device to insert their engagement and chal-
lenge rates. We connected all the devices to our experimental 
laptop for control and data logging. As participants were re-
quired to bring their laptops for the study, we placed a mouse 
and keyboard on the desk for them to connect to for their 
comfort. 

Procedure 
Upon arrival, we handed participants a plain language state-
ment explaining the purpose of our study with detailed infor-
mation about the signals we would collect. Then, they signed a 
consent form and received a short interview for demographics 
data collection. They also reported their stage and experience 
in research and general information about how they started 
their respective day in terms of hours of sleep in the night 
before, duration of commute to arrive to the office, if they had 
had breakfast, and any incident that may have had an effect on 
their mood in the beginning of the day. This information was 
collected to ensure there are be no confounding factors (due to 
events like improper sleep, long-commute), which might have 
affected the mood or fatigue levels of participants. 
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Figure 3: Notification Setup used in our study. Participants were asked 
to submit their ratings at 20-minutes interval. The color of the notifi-
cation display changed to yellow, and subsequently red if they forgot to 
insert the values at these intervals. 

Then, we showed them a short presentation about the study, 
in which we introduced the sensors and data we collected and 
gave detailed information on the framework we used for atten-
tional states and explained the exact definitions of engagement 
and challenge in that framework to them. To make sure that 
the participants understood the attentional state model and 
definitions, we gave them examples of moments a researcher 
is engaged or challenged and later asked questions about en-
gagement and challenge in different situations to validate their 
comprehension about these concepts. We repeated this process 
until participants reported that they fully understood the con-
cept. We also placed a printed material containing definitions 
of engagement and challenge on the desk in case they needed 
to refer to them later. 

Participants were guided to the allocated work desk, where 
the researcher showed them the setup, followed by the use of 
the physical sliders. Following, the researcher assisted with 
connecting their own laptop to the devices we provided and 
were asked to commence their work once the researcher had 
verified that the system is receiving the data. Participants 
were allowed to leave the study for attending meetings, having 
breaks such as lunch, coffee, etc. throughout the day and could 
leave the study at any point. 

Every 20 minutes, the notification display prompted partic-
ipants to report their engagement and challenge level at the 
moment using the sliders and buttons. The Prompt was in 
the form of a blinking light and we guided participants in 
the presentation before the study that they must insert their 
engagement and challenge level at the moment. They were 
free to ignore the notifications, which would subsequently dis-
appear after one minute. We labeled these sliders and buttons 
to make sure they could not be mistakenly perceived as each 
other. The color of the display would change from green to 
yellow and then to red if participants did not enter their input. 
The screen will become green again after they entered the 
levels, and continue with the next notification. The flow of 
notification display is depicted in Figure 3. 

At the end of the study, we conducted a second interview. In 
this interview, we asked them questions about how they spent 
the day (e.g. the tasks they worked on or incidents that may 
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Figure 4: Distribution of self-reported attentional state rates. The region 
shaded in yellow was discarded for analysis to reduce the misclassifica-
tion rate among the 4 states. 

have affected their attentional state). One complete session of 
this study lasted approximately eight hours and the starting 
and finishing time was flexible based on participants’ prefer-
ences and work routine. We compensated participants with a 
AUD$40 gift card for their time at the end of the day. 

ANALYSIS 
We collected 79 hours of face snapshots of participants cap-
tured by the webcam while doing their research tasks. In total, 
participants reported 191 engagement and challenge values 
(Mean = 12.7, STD = 5.8). On the scales of 0 to 100, engage-
ment rates had an average value of 65 and STD of 23 and 
challenge rates had an average value of 50 and STD of 25. 
The distributions are shown in Figure 4. 

For our analysis, we divided the self-reported measures of 
engagement and challenge into two sub-levels—high and 
low (high engagement: engagement > 55, low engagement: 
engagement < 45; high challenge: challenge > 55 and low 
challenge: challenge < 45). The mid-point − 5 (45) and 
mid-point + 5 (55) of the scale was used as the cut-off points 
to split the participants into these levels. We decided to discard 
the rates between 45 and 55 for better confidence of the labels. 
Next, based on Mark et al.’s [34] framework, we labeled our 
data as focus, rote, bored, and frustrated states. We used these 
labels as the experienced attentional state of our participants 
for the self-reported rates. 

As the attentional state of a participant might have fluctu-
ated within the 20 minutes, we decided to analyze the data 
only for the final 60 seconds before each self-reported rate, as 
we assumed these to better reflect their attentional state. We 
also discarded the last 15 seconds from the 1-minute obser-
vations, considering the amount of time participants took to 
move toward the slider and set them on the desired rates. To 
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Figure 5: Used and discarded parts of the dataset. For each 20-minutes 
interval, we used only the initial 45 seconds before the 60 second-interval 
to perform facial expression analysis. 

summarise, we used the initial 45 seconds of the 60 second-
interval (before participants submitted their self-reported rate) 
to perform facial expression analysis. Figure 5 shows the used 
and discarded parts of our data. 

Feature Extraction 
We extracted facial expression features from each frame with 
OpenFace [6]. These features include the presence and inten-
sity of Action Units (AUs), gaze angles, head positions, and 
head rotations (pitch, roll, yaw). We discarded outputs with 
less than 95% confidence and interpolated the discarded parts 
with linear interpolation. We used interp1d, a Python package 
to perform the linear interpolations. To remove noise and out-
liers from our data, we used a median filter with a window size 
of 61 for outputs of OpenFace. We prepossessed these outputs 
and computed features for each 45s sample. Table 1 shows 
all features we extracted from the data. In total, we used 76 
features from OpenFace outputs in our dataset. 

RESULTS 
To understand the relationship between the two dimensions 
of attentional states in our dataset, we first performed a cor-
relation test between the rates of engagement and challenge. 
Then, we studied the relationship between each type of atten-
tional state and the facial cues. Finally, we employed a linear 
mixed model to test the correlations between facial cues and 
attentional states as categorized in the framework adopted in 
our study (Figure 1). We present our results in the following 
subsections corresponding to each test we performed. We dis-
cuss our results from each test in next section under matching 
subheadings. 

Engagement and Challenge 
First, to understand the correlation between self-reported en-
gagement and challenge rates, we calculated the Pearson cor-
relation coefficient between the ratings, which yielded a statis-
tically significant positive correlation (r = 0.4, p < .05). 

Engagement and Facial Cues 
We considered self-reported challenge and engagement rates 
in our dataset as ordinal numbers because although higher or-
ders of rates show higher perceived engagement or challenge, 
the interval between values is not necessarily equally spaced. 
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OpenFace 
Features Metrics 

Gaze Angle Movements, average, SD 
Head Position Movements, average, SD 
Action Units 

AU01 (Inner Brow Raiser) 
AU02 (Outer Brow Raiser) 
AU04 (Brow Lowerer) 
AU05 (Upper Lid Raiser) 
AU06 (Cheek Raiser) 
AU07 (Lip Tightener) Percentage of presence of 
AU09 (Nose Wrinkler) each AU, average intensity, 
AU10 (Upper Lip Raiser) SD of intensity 
AU12 (Lip Corner Puller) 
AU14 (Dimpler) 
AU15 (Lip Corner Depressor) 
AU17 (Chin Raiser) 
AU20 (Lip Stretcher) 
AU23 (Lip Tightener) 
AU25 (Lips part) 
AU26 (Jaw Drop) 
AU28 (Lip Suck) 
AU45 (Blink) 

Movements, average, Head Rotation median, SD 

Table 1: Extracted features from OpenFace data 

Feature r p 

Gaze Angle (up/down, avg) -0.32 0.000 
Pitch (avg) -0.27 0.000 
AU14 (SD of intensity) -0.25 0.002 
AU25 (avg of intensity) 0.26 0.000 
AU20 (avg of intensity) 0.28 0.000 

Table 2: Correlation of self-reported engagement rates and facial expres-
sions 

For instance, we cannot state that the difference in challenge 
rates between 60 and 40 is equal to the difference between 
40 and 20, as participants report these values. Therefore, we 
applied the Spearman correlation test for determining mono-
tonic correlations between the self-reported rates and extracted 
features. To avoid false-positive significant correlations, we 
corrected our p-values with FDR-BH test. We chose this test 
over other alternatives (e.g. Bonferroni) because it has greater 
power to find true positives [16], which is the goal of this ex-
ploratory study. We present the highest correlations between 
engagement and facial expressions in Table 2. 

Based on our results, engagement is positively correlated 
with AU20 (lip stretcher) and AU25 (lips apart), and nega-
tively correlated with gaze angle, pitch, and AU14 (dimpler). 
Furthermore, based on t-test results, pitch and gaze angle 
are significantly different in high and low engagement(pitch: 
t = 4.2, p < 0.00005 and gaze angle: t = 2.8, p < 0.004). In 
Figure 8, we present boxplots of pitch and gaze angles for 
high and low engagement levels. 

Feature r p 

Gaze Angle (up/down, avg) -0.34 0.000 
Pitch (avg) -0.25 0.001 
AU28 (avg of presence) -0.25 0.001 
Gaze Angle (up/down, movements) -0.21 0.007 
Gaze Angle (right/left, movements) -0.20 0.007 
AU5 (avg of presence) 0.23 0.003 

Table 3: Correlation of self-reported challenge rates and facial expres-
sions 

Challenge and Facial Cues 
We applied the same correlation tests on challenge, and the 
results are presented in Table 3. Based on our results, chal-
lenge is negatively correlated with the gaze angle direction, 
pitch, and AU28 (lip suck); and positively correlated with AU5 
(upper lid raiser). 

Attentional States and Facial Cues 
As mentioned in the previous section, we divided the self-
reported rates to four quadrants based on their engagement 
and challenge rates (focus, rote, bored, and frustrated). In this 
part of our analysis, we used these labels as attentional states 
and evaluated their impact on facial cues. For this purpose, we 
applied a linear mixed model with participants as the random 
effect and attentional states as the fixed effect on our features. 
We adjusted the pvalues of the linear mixed model using FDR-
BH test. We discarded the data points in the frustrated quadrant 
from our analysis because we only observed 13 self-reported 
rates there. We present the results of this evaluation in Table 4. 

Feature Atten. State Coeff. SE t p 

AU01 Focus 0.13 0.03 4.69 0.000 
(Avg. Intensity) 

AU02 Rote -0.13 0.04 -3.62 0.003 
(Avg. Intensity) Focus -0.07 0.02 -3.30 0.009 

AU12 Rote -0.11 0.03 -3.30 0.009 
(Avg. Intensity) Focus -0.11 0.02 -5.51 0.000 

AU20 Focus 0.09 0.02 3.93 0.001 
(Avg. Intensity) 

Head Pose Rote -0.29 0.09 -3.20 0.013 
(Z direction) 

Table 4: Linear mixed model results on attentional states and facial cues 

Based on our results, Focus has a significant effect on AU1 
(inner brow raiser), AU2 (outer brow raiser), AU12 (lip corner 
puller), and AU20 (lip stretcher). Rote has a significant effect 
on AU2 (outer brow raiser) and AU12 (lip corner puller) and 
head position (distance between head and display). To justify 
our result for the relationship of head position and attentional 
state, we needed to analyze the interactions our participants 
did with their computer during the study in different atten-
tional states. T-test on mouse movements yielded statistically 
significant results between rote and focus (r = 3.03, p < .05) 
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and between rote and bored (r = 3.55, p < .005). We pre-
sented the boxplots of mouse movements and keyboard and 
mouse streaks in different states in Figure 6. 

Figure 6: Participants’ interactions in different levels of attentional state 

DISCUSSION 
In this section, we discuss the relationship between facial cues, 
engagement, challenge, and attentional state in details based 
on our results and literature. 

Engagement and Challenge 
As previously discussed in the related work section, the bal-
ance between skill and difficulty of a task determines whether 
an individual will engage in a state of flow. Based on two 
different views in attentional state theories, engagement can 
be the result of a state of flow [44, 52] or its pre-requisite [39]. 
In any case, there should be a positive correlation between 
engagement and the appropriate balance between skill and 
difficulty. We argue that this balance can be interpreted as 
challenge in Mark et al.’s framework [34]. For instance, work-
ers should be more engaged to the task on hand when it is 
challenging enough to require their focus, but not too challeng-
ing so that they feel frustrated. Therefore, we expected to see a 
positive correlation between engagement and challenge when 
the challenge is not beyond an individual’s skill level. As most 
tasks of researchers are self-initiated and usually not beyond 
their skills, we expected to see that a rise in challenge would 
lead to a rise in engagement [38]. Our result of the correlation 
test between self-reported challenge and engagement supports 
our expectations. 

Engagement and Facial Cues 
Grafsgaard et al. [21] found a positive correlation between 
AU14 (dimpler) and frustration. Because frustration happens 
in a low engagement state, the negative correlation between 
engagement and AU14 (dimpler) in our results is consistent 
with their findings. 

The web camera was mounted to the bottom of the screen 
to capture the faces of participants better. To keep our par-
ticipants in the field of view of the web camera, we placed 
the screen a bit higher, according to our participants’ face 
height. Therefore, our participants had to look a bit upward 
to see the screen, and looking upward leads to negative gaze 
angles in our data (see Figure 7). On the other hand, because 
the camera captured participants’ faces from the bottom of 
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Figure 7: Position of cameras in the setup and a frame of a participant 
looking at the screen 

the screen, the rotation of the face in the vertical axis (pitch) 
was negative when participants looked at the screen, and it 
was positive when they looked away (downward). Thus, we 
can explain the negative correlation between the gaze angles, 
pitch, and engagement with the fact that engaged participants 
tended to focus more on the screen whereas disengaged partic-
ipants had a lower tendency to focus on the screen. Therefore, 
engaged participants showed lower average pitch and gaze an-
gles, which resulted in negative correlations. As the Figure 8 
shows, highly engaged participants had lower pitch and gaze 
angle values than low-engagement participants. 

Figure 8: Boxplots of average pitch and gaze angle in high and low en-
gagement 
Our results showed that AU25 (lips apart) and AU20 (lip 
stretcher) were positively correlated with engagement. The 
positive correlations suggest that these are behaviors indicative 
of high engagement, which means that these cues are more 
frequently observed on the faces of engaged people, as they 
are absorbed in their tasks. Rozin and Cohen [45] previously 
reported mouth opening action units such as lips parting as 
signs of concentration. We illustrate a sample of this expres-
sion in Figure 9. AU20 (lip stretcher) is another action unit 
positively correlated with engagement, but it is often impeded 
by users’ hands covering the mouth [32], which frequently 
occurred in our dataset. 

Challenge and Facial Cues 
In addition to the negative correlations between challenge 
and pitch and gaze angles, challenge rates showed negative 
correlations with gaze angle movements in both directions 
as well. It shows not only that challenged researchers tend 
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Figure 9: Samples of facial expressions mentioned in our results 

to focus on the screen more than researchers who are not 
challenged, but also that they tend to shift their attention less 
and fixate their focus on the screen. As challenging tasks 
require information processing, this finding is consistent with 
previous studies in eye-tracking [43, 50], which showed that 
processing difficult information leads to longer fixations and 
fewer saccade movements. As such, a negative correlation 
between gaze movements and challenge was expected. 

Average presence (frequency) of AU5 (upper lid raiser) 
showed a significant correlation with challenge. Upper lid 
raiser is an important facial expression in biology, as this ac-
tion unit increases the field of view [30] and gives better visual 
discrimination and sensory advantage to an observer [30, 23]. 
From this, we can suggest that challenged people perform 
this action unit to perceive information better, whereas people 
who are not challenged use this expression less because they 
experience lower demand for perceiving information. 

Attentional States and Facial Cues 
Grafsgaard et al. [20] claimed a positive correlation of engage-
ment and AU1 (inner brow raiser). Similar to AU5 (upper 
lid raiser), this facial cue is an eye-widening type of action 
unit, which has a function of giving sensory advantage to an 
observer. From this, we hypothesize that as a focused person 
must deal with a higher load of information processing, they 
unconsciously activate this action unit. AU20 (lip stretcher), 
which previously showed correlations with engagement, is 
also significantly impacted by focus. This was expected since 
state of focus happens in high engagement. 

Because in our desk setup the camera was at the center of 
the bottom edge of the screen, we can consider head pose 
in the Z direction to be an estimate of the distance between 
participants’ heads from the screen (positive Z is away from 
camera). To understand the reason behind the significant 
correlation between rote state and head pose in the Z direction, 
we re-visited the video recordings of the participants during 
the study. Based on our observations, the interaction with the 
computer had a major effect on the changes of participants’ 
head distance from the screen. Participants moved closer to the 
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screen whenever they wanted to use the keyboard or mouse to 
interact with the computer. On the other hand, participants in 
rote state tended to continuously use their mouse and keyboard, 
whereas participants in the focus state leaned back on their 
chair while only intermittently leaning forward and performing 
some interactions, before leaning back again. Participants in a 
bored state also tended to demonstrate this behavior. Therefore, 
participants in rote state interacted more with their computers 
compared to participants in the other two states. We believe 
that the reason behind this behavior is that participants in a 
focused state had to deal with more challenging problems. 
Therefore, they needed more time to think about the problem, 
during which they may lean back in a relaxing position. 

Conversely, participants in a rote state faced lower levels of 
challenge which do not require the same amount of time to 
keep them from continuously performing the task. Bored par-
ticipants also tended to do fewer interactions because they are 
not engaged in the task on hand. To confirm our hypothesis, 
we plotted the interactions that our participants performed 
with their computers during the study in different attentional 
states. We present boxplots of mouse movements and key-
board and mouse streaks in different states in Figure 6. We can 
see the difference between the number of interactions in rote 
compared to other states, which shows that focused and bored 
participants had fewer interactions with their computers com-
pared with participants in rote state. We also applied t-test on 
mouse movements between rote and focus (r = 3.03, p < .05) 
and between rote and bored (r = 3.55, p < .005) quadrants 
which showed a statistically significant difference. 

LIMITATIONS 
Before this study, it was unrealistic to form a set of hypothe-
ses with attentional states based on any specific set of facial 
cues. There was not enough support in the literature for any 
decision on the selection of features from the vast amount of 
features available, which also limits the statistical power of 
our exploratory test due to potential Type I errors. Thus, we 
do not claim any causal relationship based on our significant 
correlation results. Instead, our results highlight those fea-
tures as potential indicators to guide future works on building 
classifiers for attentional states using facial cues. 

The accuracy of facial expression recognition is an inherent 
limitation in this study. The human face is a non-rigid shape 
with substantial individual differences, which severely affects 
the performance of toolkits [4]. Further, we performed our 
study in a workplace where we did not have control over many 
factors, such as lighting and movement. These factors also 
influence the accuracy of these tools. Therefore, although we 
did our best to reduce the noise in our dataset, it may still 
contain noisy data that may have influenced our results. 

The second category of limitation is due to the design of our 
study. During the instructional stage, before collecting data, 
we instructed and expected participants to follow their daily 
routines, which should allow our observation of their natural 
behaviors. However, participants reported that they felt ‘more 
engaged’ during the study than usual. We believe that this is 
due to the Hawthorne effect of the presence of sensors and 
the awareness of being observed by them. Consequently, this 
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made our dataset unbalanced as we had few samples in frustra-
tion state, which subsequently affected our analysis as we had 
to discard the data in frustration state as it was not populated 
enough to be representative of the state. Then again, we did 
train the participants at the beginning of the study to hold a 
consistent understanding of engagement and challenge. Nev-
ertheless, their self-reported rates are still dependent on how 
they interpreted the concepts, and this may have introduced 
inconsistencies to our labels and affected our results. 

Participants rated their attentional states every 20 minutes dur-
ing the study to record their attentional states. However, fluc-
tuations in attentional states can happen in a matter of seconds. 
As such, we discarded many of the facial expression samples 
and only analyzed the data at the time close to self-reported 
rates. In addition to losing data, not having continuous self-
reported rates prevented us from studying immediate facial 
responses reflecting change of attentional state. 

As a sample of knowledge workers, we recruited academic 
researchers as participants in our study. However, knowledge 
work covers an extensive range of jobs. Therefore, the fact that 
academic researchers cannot be representative of all types of 
knowledge workers is another limitation in this study. Despite 
these limitations, our work showed very promising results for 
the estimation of attentional state in-the-wild, only based on 
available and affordable facial expression recognition tools. 
The outcomes of our work contribute to in-situ classification 
of attentional states in the future. 

The existing literature on the function of action units is very 
limited. Previous works mostly investigated the presence of 
action units, but their absence and intensity variations were 
unattended. This limits our discussions on facial cues to the 
presence of a few action units, while ignoring other informa-
tion that facial cues may convey. 

FUTURE WORK 
We foresee three areas for future work. First, there is a possi-
bility that the correlation between attentional states and other 
facial expressions were not detected due to the limited accu-
racy of the OpenFace software. Hence, it would be interesting 
to compare the results from other facial expression recognition 
tools using our data set. Second, with regards to classifying 
attentional states of researchers for task assistance, we can 
proceed with two approaches. The first approach is to study 
other psychological sensors to measure attentional states. This 
knowledge can lead to stronger predictions for assisting knowl-
edge workers in managing their attention. 

We designed our study based on Mark et al.’s [34] attentional 
state framework. The variance in the number of self-reported 
rates and the small size of dataset caused lack of data in frus-
tration quadrant of this model. We were not able to analyze 
facial expressions in this part of the attentional state frame-
work. Therefore, the second approach is to label our data 
in another way rather than self-reported rates (e.g. inferring 
attentional state from application usage), from which we will 
be able to produce analysis on the frustration quadrant as well. 

Lastly, another potential direction of future work is to study the 
Hawthorne bias caused by physiological sensors, which was 

reported multiple times by our participants. We can investigate 
the ethical concern of the presence of sensors in the workplace 
and how that may affect users’ mental states. 

CONCLUSION 
In this paper, we investigated the visible signs of attentional 
states on researchers’ facial expressions in situ. We used 
Mark et al.’s theoretical framework, which describes atten-
tional states with two main factors: engagement and challenge. 
We conducted an observational study with 15 researchers who 
worked a day at our office while a camera captured their faces. 
Based on our findings, engaged and challenged researchers 
focus on the screen more, which resulted in a correlation be-
tween engagement and facial cues, including gaze angle and 
vertical rotation of face (pitch). Besides, as an indicator of 
absorption, engaged researchers express lips-apart behaviors 
as well. Challenged researchers tend to raise their eyelids as 
this behavior helps them to bring in more information. They 
also move their gaze less to concentrate on their tasks. Fur-
thermore, our analysis revealed that the attentional state of 
rote has a significant effect on the distance between the head 
and screen. Our findings inform future studies of measuring 
attentional state with facial cues in the real workplace. 
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