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ABSTRACT
In thiswork,we evaluate the potential of usingwearable non-contact (infrared) thermal sensors through
a user study (N=12) tomeasuremental workload. Our results indicate the possibility ofmental workload
estimation through the temperature changes detected using the prototype as participants perform
two task variants with increasing difficulty levels. While the sensor accuracy and the design of the
prototype can be further improved, the prototype showed the potential of building AR-based systems
with cognitive aid technology for ubiquitous task assistance from the changes in mental workload

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page.Copyrights for third-party components of thisworkmust behonored. For all other uses, contact the owner/author(s).
CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5971-9/19/05.
https://doi.org/10.1145/3290607.3313010

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW2315, Page 1

https://doi.org/10.1145/3290607.3313010


demands. As such, we demonstrate our next steps by integrating our prototype into an existing AR
headset (i.e. Microsoft HoloLens).

CCS CONCEPTS
•Human-centered computing→Human computer interaction (HCI); • Computingmethod-
ologies→Cognitive science;Mixed / augmented reality ; •Hardware→ Sensor applications and
deployments;

KEYWORDS
Cognitive load, thermal sensor, affective computing

INTRODUCTION

(a) Arduino Connection (b) Thermal Sensors

(c) Front View (d) Side View

Figure 1: Prototype wearable non-contact
thermal sensors with 3d-printed frame.

Advances inpsycho-physiological sensing technologyhavesubstantially contributed to thedevelopment
of research revolving around understanding and augmenting human cognition [5, 6, 13]. Researchers
in HCI and psychology has used a wide range of technology including electroencephalogram (EEG),
eye tracking and thermal imaging as a potential method to measure psychological attributes such as
emotion, stress and mental workload [2, 9, 18].
The use of Cognitive Load Theory (CLT) to interpret sensor data has shown to have potential

by interpreting estimated overall mental workload as different types of cognitive load [16, 17], few
were able to validate the data with direct measuring methods of mental workload. Despite the rapid
miniaturisation of sensors in recent years, there is still a lack of ideal implementation due to its obtrusive
nature and poormobility. In this work, we estimatedmental workloadwith small non-contact infrared
thermal sensors and conducted a user study to validate the sensor datawithCLT. The application
of this technologyenablesubiquitousmentalworkload sensingandprovidesopportunities for automatic
task assistance based on observed mental workload and its reference within the task at hand. The small
footprint of the hardware also allows it to be easily embedded inmost wearable devices. We envision an
Augmented Reality (AR)-based system (e.g. Microsoft HoloLens) of today but with integrated thermal
sensors for the purposes of workload-aware automatic task assistance.

RELATEDWORK
Cognitive Load Theory has been an ongoing topic of investigation for application such as knowledge
transfer in learning [4, 12, 16]. For instance, Brunken et al. categorized physiological measurement and
dual-task performance measurement of cognitive load as indirect and direct respectively due to their
direct causal relationship with cognitive load [4]. The authors, through a user study, have shown that a
secondary reaction task can be used for estimating the cognitive load induced by the primary reading
comprehension task.
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Different approaches are used by researchers to measure mental workload. Over the years, a strong
relationship has been demonstrated between facial temperature change and mental workload. For
instance,Zajoncetal.’sworkonemotionandfacial efference revealed the linkbetween facial temperature
dynamics and stress [18]. In another study, Kataoka et al. found a high correlation between stressful task
performance and facial temperature. Or and Duffy utilized facial thermal imaging in driving simulation
and claimednose temperature as a reliable indicator ofmentalworkload [11]. Stemberger et al. analyzed
the effect of cognitive workload on facial temperature with a neural network classifier [14]. Jenkins and
Brown conducted a study to indicate that forehead temperature change can reflect variation in cognitive
demand [10]. Abdelrahman et al. demonstrated that a significant effect can be found between cognitive
load and task difficulty using a system that implemented thermal imaging with face recognition [1].

Estimation of mental workload using sensor technology can help us build Automatic Task Assistance
systems. For example, Bonanni et al. designed intelligent kitchen systems to help reduce cognitive load
in daily life using attention-tracking [3]. Similarly, Gerry et al. designed a virtual reality system that
assists in a search task with EEGmental workload sensing [8].

Figure 2: Tasks. Top: Stroop Test, Bottom:
Reading Comprehension with Secondary
Task.

USER STUDY
We conducted a user study to investigate the feasibility of building a wearable sensor implementation
for estimating mental workload. Our study is driven by three hypotheses based on prior work:

(1) With increasing task difficulty, a subsequent increase can be observed in forehead temperature
and a substantial decrease in nose temperature.

(2) When participants perform the tasks, there will be a greater change in temperature as compared
to the rest periods.

(3) Performance on a secondary task will be affected as the difficulty level of primary tasks increase.

To test the hypotheses, we employed a repeated-measures design where all participants were sub-
jected to four difficulty levels of the Stroop test [15] and a reading comprehension task containing an
additional secondary reaction test. The order of the tasks was counterbalanced using a Latin Square.

Tasks: The Stroop test required participants to quickly react to a word-color combination to decide
if theymatch (Figure 2-Top). The difficulty levels of this test correlated with the amount of time allowed
to react to each stimulus i.e. the more difficult, the faster the participant has to perform the task.
On the other hand, the reading task required participants to read and understand each material
within three minutes followed by a comprehension question (Figure 2-Bottom). The difficulty levels
of the materials were based on their topics, sources and Flesch Reading Ease scores [7]. We used four
different materials– a travel blog, a financial news article from an entry-level textbook, a GMAT 500
scientific article and a GMAT 700 article about media theory– with a Flesch Reading Ease scores of
68.6, 54.1, 29.1 and 4.0 respectively. We used the performance of a secondary reaction task added to
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the reading comprehension task to directly measure mental workload. During reading, participants
reacted to the randomly-appearing circle as quickly as possible by pressing a button tomake it disappear
(Figure 2-Bottom). The performance of the reaction task was recorded as reaction time.

Experimental Setup:Our setup consisted of a desktop computer with two thermal sensors con-
nected by an Arduino board (Figure 3). The sensors are Melexis MLX90614 Single Zone Infra Red
Thermometers with 5 Hz frequency, -40 to +85°COperating Temperature Range, ± 0.5°C accuracy and
90°FOV. The sensors were attached to a wearable frame similar to everyday eyeglasses together with a
3D-printed component designed as adjustable to fit different facial features (Figure 1).

Figure 3: Experimental Setup.

Participants and Procedure: We recruited 12 participants (7 females) with an average age of 26.3
years through the University’smailing list. All participants were required to have native English reading
ability.We informed the participants of the purpose of the study upon their arrival. After a brief training
with theStroop test,weasked theparticipants toperformeach level for 3minutes, each followedbya rest
period of 3minutes. Then, theywere asked to perform each level of the reading task (with the secondary
reaction task) in the same fashion (3 minutes task, 3 minutes rest). The study took approximately 60
minutes on average to complete.We recorded the temperaturewith the sensors pointing at participants’
forehead and nose (as shown in Figure 1(c) and 1(d)) for both tasks as participants performed them
including the rest periods in between. The experimentwas conducted in amaintained room temperature
of 24°C. Participants were compensated with coffee vouchers for their time.

Results: We analyzed the effect of task difficulty on forehead and nose temperature as well as
the difference between forehead and nose temperature. We examined two aspects of the change in
temperature: change-over-time and the velocity-of-change. We define change-over-time as the mean
temperature during the lastminute of a 3-minute task or a 3-minute breakminus themean temperature
during the first five seconds of the same period. We define the velocity-of-change as the velocity of
temperature change during any 30-second window (during which the temperature changed the most)
in a 3-minute task or a 3-minute break.
We tested the effect of the objective and subjective difficulty levels of the tasks on temperature

change with one-way ANOVA tests, but found no significant results. We also tested the effect of the
difficulty levels of reading task on the average reaction time of the secondary task with a one-way
ANOVAwithout significant results.

We compared the temperature change during the 3-minute task periods and their preceding 3-
minute break periods. We tested the effect of task on/off on temperature change for each difficulty level
with one-way ANOVA tests. We found significant effect of between task and rest periods on change-
over-time of forehead-nose temperature difference for 3 conditions: level-3 Stroop test (F (1, 11) =
13.09,p < .01,дes = 0.27) (Figure 4-Top), level-4 Stroop test (F (1, 11) = 11.32,p < .01,дes = 0.43)
(Figure 4-Bottom) and level-4 reading task (F (1, 11) = 4.97,p < .05,дes = 0.29) (Figure 5).
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Discussion: Though the results did not show a significant effect of task difficulty on facial temper-
ature change, the effect of task on/off on temperature change did reflect our second hypothesis. In
other words, though our sensor did not provide enough granularity to differentiate between levels of
difficulty within a task, it could differentiate between doing the task and not doing the task. Among all
levels of both tasks, only the twomost difficult levels of Stroop tests and the one most difficult level of
reading task showed significant increase between the forehead-nose temperatures.

Figure 4: Stroop Test Results.

Figure 5: Reading Task Result.

We observed individual differences from the results. While the recorded facial temperature of some
participants demonstrated a clear increase-decrease pattern during task-on and task-off periods, the
temperature change pattern of other participants was not as clear. We summarize possible reasons for
such individual difference as the different facial structure of different participants resulted in different
position anddistance of the sensor from their skin; different participantsmayhave adifferent perception
of task difficulty; different participants may have a different threshold of facial temperature change.
While we attempted to measure facial temperature with small foot-print thermal sensors, the lack of
accuracy of the sensors utilised in this study compared tomore professional thermal cameras is another
possible reason for the lack of significant results.

CONCLUSION
While our preliminary results did not show a significant effect of task difficulty on facial temperature
change, we did find a significant effect of task performance on facial temperature change in the most
difficult tasks. These results indicate the possibility of estimating mental workload with non-contact
infrared thermal sensors embedded on a wearable device while requiring improvement in sensor
accuracy and individual fitting.We will work on improving the design of the wearable supporting frame
for the sensors to accommodate different facial features better and test the effect of task difficulty
on larger sample size. We plan to explore the possibility of utilizing more advanced thermal sensing
technology while restricting the form-factor of the device to enable more accurate and task-difficulty-
sensitive mental workload estimation.

FUTUREWORK
Our work paves the way for a potential AR-based automatic task assistance system with Cognitive
Aid technology. We have begun to design an attachment for the Microsoft HoloLens to embed the
thermal sensors for mental workload sensing (see Figure 6). With the ability to render virtual objects on
surrounding surfaces using wearable AR technology, we will explore the use of mental-workload-aware
automatic task assistance system. To do this, we will incorporate the environment of a user, whether
working or learning with mental workload sensing to provide real-time feedback to reduce extraneous
cognitive load for effective learning and to aid users in everyday tasks.
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Figure 6: Thermal sensors embedded on
HoloLens with 3d-printed adjustable com-
ponents for task assistance.
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